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Abstract  

In this paper we construct earthwork allocation plans for a linear infrastructure road project. 
Fuel consumption metrics and an innovative block partitioning and modelling approach are 
applied to reduce costs. 2D and 3D variants of the problem were compared to see what 
effect, if any, occurs on solution quality. 3D variants were also considered to see what 
additional complexities and difficulties occur. The numerical investigation shows a significant 
improvement and a reduction in fuel consumption as theorised. The proposed solutions 
differ considerably from plans that were constructed for a distance based metric as 
commonly used in other approaches. Under certain conditions, 3D problem instances can 
be solved optimally as 2D problems. 

Keywords: mass-haul optimisation, earthworks alloca tion, fuel consumption, 
emissions  

1.  Introduction 

In this paper we apply a new planning technique to a road construction case study. Road 
construction can be the source of very large and costly earthworks as many have significant 
length and pass through difficult terrain. In this type of linear infrastructure project the 
principal earthwork operations are: i) stripping vegetation and topsoil, ii) loosening material in 
cutting and borrow pits, iii) excavating material, iv) loading material from cuts and hauling to 
fills (or to spoil), v) spreading, shaping, watering, compacting and trimming the fill material 
(QTMR 1977). The main idea of earthworks is to alter an existing land surface into a desired 
configuration by excavating material from specific locations and using that material as fill in 
other locations. This earthwork problem is commonly referred to as mass-haul. A solution to 
this problem is an earthwork allocation plan (EAP) that describes where cut material is to be 
placed as fill and how much material is to be moved between each cut-fill pairing. There are 
two golden rules that must also be borne in mind during these projects; don’t double handle 
material whenever possible and always load and carry material downhill (QTMR 1977). 

In the last ten years much research has been performed in this field. Recent papers 
include Son et al. (2005), Aruga et al. (2005), Akay (2006), Karimi et al. (2007), Kim et al. 
(2007), Goktepe et al. (2008), Zhang (2008), Dawood and Castro  (2009), Ji et al. (2010), 
Hola and Schabowicz (2010), Ji et al. (2011), Shah and Dawood (2011), Nassar and Hosney 
(2012). However, there are many limitations and inaccuracies in this work, and much of it is 
not comprehensive or detailed enough to be readily applicable to real life. A comprehensive 
review and critical analysis of this field by Burdett and Kozan (2013a) has recently shown 



that there are many opportunities and avenues for future research, and that a variety of new 
approaches can be developed. Consequently in Burdett and Kozan (2013b) a number of 
new approaches were developed. The partitioning of the project site into blocks and the 
development of associated block models was the foremost approach in that paper. The 
block models are a superior approach to previous section based alternatives as 
“conceptually” they model more realistically and accurately the position of earth at different 
elevations. The block models are generic and are readily applicable for both 2D and 3D 
scenarios. Figure 1 in particular shows the difference between 2D and 3D scenarios. The 
path between blocks and other locations is not direct, i.e. it is the sum of separate 
movements over inclined planes of different angles. This approach is superior to those taken 
in other papers and models more realistically the movement of material through the terrain 
as it is altered. 

 
a) Movements of earth across x and z axis    b) Mov ements across x, y and z axis 

Figure 1. Comparison of 2D and 3D earthwork scenari os 

 
In Burdett and Kozan (2013b) the physics concept “work” has also been used as a proxy for 
fuel consumption. It is a generic and robust metric for the movement of earth over inclined 
planes of different angles and surfaces. That approach is necessary as it is impractical to 
measure and quantify the exact fuel consumption of every construction vehicle and for every 
associated factor. Fuel consumption was used as a metric instead of haul distance or haul 
time for several reasons. Foremost is that distance travelled is not an accurate measure of 
cost as the gradient of travel (among other important factors) is not included. The gradient of 
travel significantly affects the ease or difficulty of moving material and greatly effects fuel 
consumption. Recently the environmental impact of construction activities has become an 
important topic due to the pollution that is created. In order to quantify emissions, the fuel 
consumption of vehicles performing hauls must be quantified. The reduction of fuel 
consumption though is important in its own right, as recent site visits to the Bruce Highway 
upgrade at Gympie (Queensland) has revealed that there is often hundreds of thousands of 
dollars worth of fuel sitting in vehicles on project sites. 

2. A Review of Block Optimisation Models 

This approach is based upon the partitioning of the problem domain into rectangular prisms 
(i.e. 3D blocks). Our previous paper Burdett and Kozan (2013b) should be consulted for 
extended details. The following is a review of the most pertinent features: 

The set of blocks requiring excavation and fill respectively are denoted by . 
Borrow and waste site blocks are regarded as auxiliary blocks. They are members of set 

. Borrow site blocks are however included in  as they involve excavations and are 
sources of earth for filling activities. Similarly waste site blocks are included in  as they are 



locations for fill. The size of each block b is specified by  and its position in three 
dimensional space is given by the grid location, . Its middle point is similarly, 

. The volume of each block is denoted as  
and the predominant soil type in each block is denoted as . However the volume of each 
type required (i.e. as cut and fill) is denoted by  and  respectively. A binary 
parameter that equals one if material of type s is acceptable in block b, and zero if material is 
not acceptable, is defined as . The fuel consumption of vehicles making hauls between 
block b and b’ is denoted by . A binary decision variable denoted by  is defined to 
signify whether material is hauled from block b to . The volume to be cut from block b and 
moved to block  of soil type s is also denoted as . Two competing block optimisation 
models utilise these decision variables. They are shown below. 

Block Model BLM-1 (Mixed Integer Programming (MIP)) : 
 
Minimise    [Total fuel consumption]    
Subject to: 
     [Blocks moved to one destination]  
     [Blocks filled from one source]  
     [Borrow site utilisation]   
      [Waste site utilisation]    

      [Haulage restriction]   
       [Haulage restriction]   

   [Borrow to waste site restriction]
     [Binary constraint]    
 
Block  Model BLM-2 (Linear Programming (LP)): 
 
Minimise    [Total fuel consumption]   
Subject to: 
    [Cutting constraint]  
    [Filling constraint]  
    [Borrow site utilisation]
     [Waste site utilisation] 
     [Positivity restriction]   
    [Borrow to waste site restriction] 
     [Haulage restriction] 
 
These models differ quite considerably from previous approaches that only model the 
movement of material between sections in a horizontal fashion. Hence they are conceptually 
superior and somewhat novel. The two models are slightly different and it is a matter of 
conjecture (at present) which is most applicable to industry. The first model considers where 
blocks are to be moved to as fill. It is assumed that soil type within each block is uniform and 
blocks are whole.  That is each cut block is initially full of material and each fill block has no 
material. Therefore “whole” blocks are cut, moved, and placed as fill and a blocks material is 
not divided; it goes to one location.  This is not an unrealistic assumption in many situations. 
From a practical perspective it is perhaps more realistic to dig up a discrete block of earth 
and to shift it to one specified place as opposed to trying to accurately break it up into many 



smaller parts and to send them to many specific locations. The second model is a relaxation 
of the first. Therefore block material can be divided and hauled as fill to many different 
locations. Conceptually the second model is superior, but practically it may not be possible 
to implement a solution as exactly specified by this model. It should be noted that  and 

 denote the capacity of the vehicle making hauls between blocks. Dividing by these 
values, in the objective function, computes the number of hauls to be made. Details 
concerning the calculation of fuel consumption and other parameters can be found in Burdett 
and Kozan (2013b). 

3.  Case Study 

The case study is a road construction project from Northern Queensland (Australia). Its 
length is approximately 7 km. The terrain and planned road profiles are shown in Figure 2. 

  

60

65

70

75

80

85

90

95

100

0 1000 2000 3000 4000 5000 6000 7000

E
e
lv
a
ti
o
n

Chainage

 
 

Figure 2. Longitudinal profiles of ground and plann ed road surface 
x-axis (chainage): 0-7 km; y-axis: 60 – 100 m (elev ation) 

 
The land is assumed to follow the line connecting adjacent elevations. Data occurs every 50 
metres and the road width is 20 metres. A significant amount of cutting and filling are 
required and these “raw” amounts are fairly well balanced. The earthwork volumes are 
based purely on the longitudinal profiles, i.e. as the difference between the blue and red 
lines in Figure 2. The net cut and fill required is 304231.85 and 299246.81 cubic metres 
respectively; a difference of 4985 cubic metres. For this case study, one soil type has been 
considered and the cost of fuel is $1.50 per litre. Waste sites are placed at either end of the 
project (i.e. one for each cross section) and one borrow site occurs 30km to the right of the 
project site. 

This case study has already been partially considered in Burdett and Kozan (2013b) 
but only 2D variants were solved in that paper and multiple soil types were addressed. A 
section based approach was also applied in that paper. It was found to be inferior, and 
therefore has not been reconsidered in this paper. As most construction projects are 3 
dimensional, this paper provides an important link between theory and practice. 

4.  Numerical Investigations 

Planned Road 

Ground 

Average elevation 



This numerical investigation concentrates on solving 3D variants of the case study described 
in the preceding section. This is done as many road projects are solved as 2D problems. 
However some 2D variants are also solved for comparative purposes.  A 3D problem is 
simply one that partitions the domain in each axis. Previous 2D variants of the problem did 
not partition the project site across the y-axis (i.e. only in x-z axis). In other words there was 
only a single cross section containing blocks. 

Various blocks sizes have been investigated. This size directly affects the total 
number of blocks and is limited by the available memory on a computer. As blocks get 
smaller, more are required, and more decisions need to be made. From a theoretical 
viewpoint, the solution of earthwork problems with greater number of blocks is highly 
significant and very challenging from a computational point of view. However from a purely 
practical viewpoint, block sizes below a certain size are of limited value (at least in the near 
future) to contractors who perform the earthworks. 

In this paper the OPL Studio software (also known as CPLEX) has been used to 
solve the mathematical “block” models. A quad core, Dell PC with a 2.5 GHz processor and 
4GB memory has been used. The model parameters were computed in C++.  

4.1. Cross Section Replication 

Provided that elevations are constant across the y-axis, it is theorised that an optimal 
solution to the full 3D problem could be obtained by replicating the answer for a single 2D 
slice. In other words there is no movement of material between cross sections. This 
approach significantly reduces the size of the problem that must be solved. It also means 
that smaller blocks can be used and more blocks can be used within a single cross section. 
Otherwise, blocks have to be distributed across all three dimensions and fewer blocks can 
be used per cross section. This idea is shown in Figure 3. 

 
Figure 3. Single cross section versus multiple (i.e . three) 

 
For this approach, the blocks models were applied and the results are shown Table 1 and 2.  

Table 1. BLM-1 results for cross section replicatio n approach 

Variant  Block Size  
(sx, sy, sz) 

#Block  #Cross  
Section 

Metric  Distance  
(km) 

Work (J)  Fuel 
Cons 

(litres) 

Cost  
($) 

Cost  
Diff. 
($) 

2D (100, 20, 1) 582 × 1 Work 31,115 9.5581E+10 95,581 143,372 79,243 
Distance 29,467 1.4841E+11 148,410 222,615 

2D (100, 10, 1) 582 × 2 Work 15,557 4.7791E+10 47,791 71,686 79,244 
Distance 14,734 7.4205E+10 74,205 111,308 

2D (100, 5, 1) 582 × 4 Work 7,779 2.3895E+10 23,895 35,843 79,244 
Distance 7,367 3.7102E+10 37,102 55,654 

2D (50, 20, 1) 953 × 1 Work 21,071 6.6134E+10 66,134 99,201 34,575 
Distance 19,509 8.9184E+10 89,184 133,776 



2D (50, 10, 1) 953 × 2 Work 10,535 3.3067E+10 33,067 49,600 34,576 
Distance 9,755 4.4592E+10 44,592 66,888 

2D (50, 5, 1) 953 × 4 Work 5,268 1.6533E+10 16,533 24,800 34,576 
Distance 4,877 2.2296E+10 22,296 33,444 

 

Table 2. BLM-2 results for cross section replicatio n approach 

Variant  Block Size  
(sx, sy, sz) 

#Block  #Cross  
Section 

Metric  Distance  
(km) 

Work (J)  Fuel 
Cons 
(litres) 

Cost  
($) 

Cost  
Diff. ($) 

2D (100, 20, 1) 582 × 1 Work 13,776 4.9518E+10 49,518 74,277 15,934 
Distance 12,621 6.0141E+10 60,141 90,211 

2D (100, 10, 1) 582 × 2 Work 6,888 2.4759E+10 24,759 37,138 15,936 
 Distance 6,311 3.0070E+10 30,070 45,106 

2D (100, 5, 1) 582 × 4 Work 3,444 1.238E+10 12,379 18,569 15,936 
 Distance 3,155 1.5035E+10 15,035 22,553 

2D (50, 20, 1) 582 × 1 Work 13,856 5.4556E+10 54,556 81,834 10,475 
Distance 12,651 6.1540E+10 61,540 92,309 

2D (50, 10, 1) 953 × 2 Work 6,928 2.7278E+10 27,278 40,917 10,476 
 Distance 6,326 3.0770E+10 30,770 46,155 

2D (50, 5, 1) 953 × 4 Work 3,464 1.3639E+10 13,639 20,459 10,472 
 Distance 3,163 1.5385E+10 15,385 23,077 

 

The distance metric used was Euclidean distance. The cross section column reports the 
number of cross sections and that the solution to the full 3D problem is the specified number 
of times larger. Table 1 and 2 shows that the work metric provides a reasonable 
improvement over those solutions obtained with the distance metric. The solutions obtained 
for a given (sx, sz) are all the same and different sy values had no effect on the final 
solution. The cost difference between BLM-1 is greater than BLM-2. This occurs because 
BLM-1 has less flexibility in how earth is to be divided. For example, a blocks worth of earth 
can only be moved to one destination. BLM-2 is given the opportunity to divide the earth as it 
sees fit. 

4.2. 3D Instances 

In this section, the y-axis is fully partitioned into blocks, and movement between cross 
sections is not limited. The results are shown in Table 3 and 4. 

Table 3. BLM – 1 results for standard 3D problems 

Variant Block Size 
(sx, sy, sz) #Blocks Metric Distance 

(km) Work (J) Fuel Cons 
(litres) 

Cost 
($) 

Cost  
Diff. 
($) 

3D (100, 10, 1) 1164 Work 31,115 9.5581E+10 95,581 143,372 79,243  Distance 29,467 1.4841E+11 148,410 222,615 

3D (100, 5, 1) 2328 Work 31,115 9.558E+10 95,581 143,372 79,243 
 Distance 29,467 1.484E+11 148,410 222,615  

3D (50, 10, 1) 1906 Work 21,071 6.6134E+10 66,134 99,201 34,575  Distance 19,509 8.9184E+10 89,184 133,776 

3D (50, 5, 1) 3812 Work - - - -  
 Distance - - - -  

 
Table 4. BLM – 2 results for standard 3D problems 

Variant Block Size 
(sx, sy, sz) #Blocks Metric Distance 

(km) Work (J) 
Fuel 
Cons 
(litres) 

Cost 
($) 

Cost  
Diff. 
($) 

3D (100, 10, 1) 1164 Work 13,776 4.9518E+10 49,518 74,277 15,934 
 Distance 12,621 6.0141E+10 60,141 90,211 

3D (100, 5, 1) 2328 Work 13,776 4.9518E+10 49,518 74,277 15,934 



Distance 12,621 6.0141E+10 60,141 90,211  

3D (50, 10, 1) 1906 Work 13,856 5.4556E+10 54,555 81,832 10,485 Distance 12,651 6.1540E+10 61,544 92,317 

3D (50, 5, 1) 3812 Work - - - - - Distance - - - - 
 
The time to solve the models was no more than several minutes in the majority of cases. On 
one of the largest problem instances (i.e. for the binary decision model BLM-1), the CPU 
time was in the vicinity of fifteen minutes. The last test problem in Tables 3 and 4 could not 
be solved as insufficient memory was available to generate the model. These tables show 
partitioning across the y-axis had no effect on the solution. The results are also the same as 
those obtained in Table 1 and 2. Therefore when elevations are constant across the y-axis, 
we can conclude that a 3D problem is optimally solved as a 2D problem.  Upon closer 
investigation the reason for this is that distance is a significant component of fuel 
consumption and the distance between two blocks is shorter if the blocks are in the same 
cross section. This is similarly true as the elevations are the same across the y-axis. 
Graphically this is shown in Figure 4. For example it is less costly to move material from 
(1,1) to (2,1) as the distance is shorter. As the elevation at (2,2) and (2,3) are the same as 
(2,1), then there is no change in gradient. 
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Figure 4. Increased distance when hauling between b lock (1,1) and (2,2) or (2,3). 

Even though obtained solutions are the same in terms of cost and fuel consumption, we 
should point out that the solutions (i.e. the allocations) are all different. Therefore the 
numerical investigations as reported in these tables are still beneficial and required. These 
tables also show that each instance is actually solvable - something we would not otherwise 
know. 

4.3. Revised 3D Instances 

Because of the results of the preceding sub section, larger problems can be simplified and 
solved by cross section replication. If any of the aforementioned conditions are violated then 
we believe it is possible to improve the solution by partitioning in 3D. To test this hypothesis 
we have altered the position of waste (Wa) and borrow (Bo) sites and have resolved the 
optimisation models. The new position of waste and borrow sites is shown in Figure 5.  
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Figure 5. Original layout and the altered layout 

The borrow site is now positioned closer to the road and is a more viable source of earth. 
Other material must therefore be disposed of in waste sites which are placed equidistantly 
along the length of the new road. The new results are shown in Table 5 and 6. These results 
show that the solution differs when the problem is partitioned into two or four cross sections. 
Hence the results of the previous section are in fact caused by constant elevations across 
the y-axis and certain symmetries in the position of borrow and waste sites. The total work 
required was negative in some solutions, and this means that the net effect of earth 
movements is downhill travel. This result in a rarity and is only obtainable because borrow 
and waste sites are very close to the project site, i.e. they are equidistantly placed on either 
side. This result is useful as it demonstrates that such an arrangement is highly beneficial 
and ensures that fuel consumption is minimal. 

Given the different results obtained in Table 5 and 6, an interesting question that 
comes to mind is, how good is the cross section replication approach for solving the revised 
3D problems? In other words, how close to optimal are the solutions? To answer this 
question the cross section replication approach was applied to the revised case study. The 
results are shown in Table 7 and 8. The values within brackets are for the whole problem 
and not for a single cross section. 

Table 5. BLM – 1 results for revised 3D problems 

Variant Block Size  
(sx, sy, sz) #Blocks Metric Distance 

(km) Work (J) 

3D (100, 10, 1) 1164 Work 18,994 -1.6559E+10 
Distance 17,811 3.4148E+10 

3D (100, 5, 1) 2328 Work 19,630 -1.1172E+10 
Distance 18,147 3.7988E+10 

3D (50, 10, 1) 1906 Work 17,152 2.9940E+10 
Distance 15,772 5.5725E+10 

 
Table 6. BLM – 2 results for revised 3D problems 

Variant Block Size  
(sx, sy, sz) #Blocks Metric Distance 

(km) Work (J) 

3D (100, 10, 1) 1164 Work 12,927 4.0608E+10 
Distance 12,031 5.2135E+10 

3D (100, 5, 1) 2328 Work 12,856 3.9993E+10 
Distance 11,959 5.1522E+10 

3D (50, 10, 1) 1906 Work 12,906 4.5116E+10 
Distance 12,019 5.4058E+10 

 



Table 7. BLM – 1 results for cross section replicat ion approach (revised 3D problems) 

Variant  Block Size  
(sx, sy, sz) 

#Blocks  #Cross  
Section 

Metric  Distanc e (km) Work (J)  

2D (100, 20, 1) 582 ×1 Work 18,660 -2.2945E+10 
Distance 17,407 2.5685E+10  

2D (100, 10, 1) 582 ×2 Work 9,328 (18,656) -1.1491E+10 (-2.2982E+10) 
Distance 8,701 (17,402) 1.2823E+10 (2.5645E+10) 

2D (100, 5, 1) 582 ×4 Work 4,664 (18,654) -5.7490E+09 (-2.2996E+10) 
Distance 4,350 (17,400) 6.4075E+09 (2.5630E+10) 

 
Table 8. BLM – 2 results for cross section replicat ion approach (revised 3D problems) 

Variant  Block Size  
(sx, sy, sz) 

#Blocks  #Cross  
Section 

Metric  Distance (km)  Work ( J) 

2D (100, 20, 1) 582 ×1 Work 12,928 4.0613E+10 
Distance 12,032 5.2150E+10 

2D (100, 10, 1) 582 ×2 Work 6,432 (12,864) 1.9016E+10 (3.8032E+10) 
Distance 5,962 (11,923) 2.4695E+10 (4.9389E+10) 

2D (100, 5, 1) 582 ×4 Work 3,216 (12,863) 9.5070E+09 (3.8028E+10) 
Distance 2,981 (11, 923) 1.2346E+10 (4.9385E+10) 

 
These results are quite interesting as they show that the solution is steadily improving as the 
width of each cross section gets smaller and the number of cross sections increases. In 
relation to the results presented in Table 5 and 6, the above results are difficult to interpret. 
In an attempt to make more sense of the results, Table 9 and 10 have been provided. All 
that can really be concluded however is that the results are comparable. It is unclear why the 
cross section replication approach has returned slightly better solutions on a number of 
occasions.  

Table 9. BLM-1 result comparisons 

Variant  Block  Size Work  Fuel Cons  Cost  

3D (100,10,1) -1.655900E+10 -16,559 -24,838 

3D (100,5,1 -1.117200E+10 -11,172 -16,758 

2D×1 (100,20,1 -2.294500E+10 -22,945 -34,417 

2D×2 (100,10,1 -2.298200E+10 -22,982 -34,473 

2D×4 (100,5,1) -2.299600E+10 -22,996 -34,494 

Table 10. BLM-2 result comparisons 

Variant  Block  Size Work  Fuel Cons  Cost  

3D (100,10,1) 4.060800E+10 40,608 60,912 

3D (100,5,1) 3.999300E+10 39,993 59,989 

2D×1 (100,20,1) 4.061300E+10 40,613 60,919 

2D×2 (100,10,1) 3.803200E+10 38,032 57,048 

2D×4 (100,5,1) 3.802800E+10 38,028 57,042 

 

We conclude that the cross section replication approach is a viable approach to solving 
many problems. This approach is particularly useful for large problems that cannot be 
generated conventionally.  If the cut and fill amounts are quite different across the y-axis 
then replicating the solution for a single cross section will not be useful. In this situation, 
each cross section can be solved separately. In this way the whole problem can be 
considered and a reasonable solution (but not optimal) can be obtained. 



5. Block Size Benefits and Anomalies 

In the numerical investigations some discrepancies were found that are related to block 
sizes and the number of blocks. The solution quality for instance is sometimes superior 
when there are bigger and fewer blocks. This section explains the reason behind this and 
sheds light on whether more blocks are better and should be 
modelled.

 
 
 
 
 
 
  

a)  Haulage between large blocks  b) Division into smaller sub blocks 
Figure 6. Effect of block size on earth movements 

 
It has been assumed that all hauls occur from the middle point of one block to the middle 
point of another (see Figure 6a). This is a common practice and has been used in previous 
section based modelling approaches. All the movements required to haul material to the 
blocks central position (i.e. dotted red arrow in Figure 6) are however ignored in the current 
calculations. When the block sizes are decreased (see Figure 6b), then less material must 
be moved to the blocks centre (i.e. as they are smaller). In comparison to larger blocks, 
more of the earth movements are then taken into account and are modelled explicitly in the 
block optimisation models. Because more movements are modelled, the solution can be 
worse than the solution produced for larger block sizes. Though they have inferior key 
performance indicators (kpi), they are really better. 

To prove this analytically, we define the effort of moving material to the centre of each block 
as follows: 

  

,  , , 

 ,   ,  
 ,    

 
In the above equations TKM stands for tonne-kilometres. It is the sum of the product of the 
amount hauled by the haul distance. The equation for computing this amount is based upon 
dividing the block (which is of size ) into a number of sub blocks. The number of 
these in each axis is specified by nx and ny respectively. Hence the size of each sub block is 
given by . The movement from the middle of each sub block to the blocks middle point 
is then aggregated. The Euclidean distance is utilised. The amount of material within each 
sub block is equal, and given by amt. This equation can also be easily extended for 3D 
situations. 

As the number of sub blocks increases the TKM value becomes more accurate and 
includes more and more of the internal movements.  This is shown in Table 11 for a square 
block. It should be noted that nx and ny can be different. For any two values, it does not 
matter which is defined as nx or ny provided that the original block is a square (see Table 
12). If the block is not square then the choice of nx and ny have a different effect (see Table 



13 and Table 14). The value of TKM also does not necessarily increase with the number 
blocks. These differences all affect the solution of an earthwork allocation plan. 

Table 11. TKM values for a 100x100 block with 500 t onnes of material 

nx ny #blk  TKM nx ny #blk  TKM 

2 2 4 17677.7 8 8 64 19021.5 

3 3 9 17883.1 9 9 81 19023.4 

4 4 16 18721 10 10 100 19059.7 

5 5 25 18743.6 20 20 400 19111.9 

6 6 36 18940.9 100 100 10000 19129.2 

7 7 49 18946.4 1000 1000 1000000 19129.9 

 
Table 12.  More TKM values for a 100x100 block with 500 tonnes  of material  

nx ny #blk  TKM nx ny #blk  TKM 

2 1 2 12500 7 1 7 12244.9 

1 2 2 12500 1 7 7 12244.9 

4 1 4 12500 3 2 6 18055.6 

1 4 4 12500 2 3 6 18055.6 

 
Table 13.  TKM values for a 100x20 block with 500 tonnes of ma terial  

nx ny #blk  TKM nx ny #blk  TKM 

2 2 4 12747.5 8 8 64 12974.4 

3 3 9 11998.5 9 9 81 12944.2 

4 4 16 12893.9 10 10 100 12989.3 

5 5 25 12714.3 20 20 400 13013.3 

6 6 36 12947.9 100 100 10000 13022.7 

7 7 49 12882.4 1000 1000 1000000 13023.1 

 
Table 14.  More TKM values for a 100x20 block with 500 tonnes of material  

nx ny #blk  TKM nx ny #blk  TKM 

2 1 2 12500 7 1 7 12244.9 

1 2 2 2500 1 7 7 2448.98 

4 1 4 12500 3 2 6 12068.7 

1 4 4 2500 2 3 6 12791.2 

 
Given the effect of moving earth within blocks, this aspect should be included in all 
earthwork allocation models. Therefore all fuel consumption costs  should also include 
the fuel consumption of moving earth to the centre of block b and moving material away from 
the centre of block b’. The following example demonstrates the effectiveness of dividing the 
domain into smaller blocks, the possible improvement, and the additional calculations 
required. 



Example:  Consider a 100x20 metre block with 500 tonnes of earth to be moved to an 
adjacent block. Also consider a partitioning of the block into 50x10 sub-blocks (see Figure 
7).  

 
 
 
 
 
 
 
  

Figure 7. Graphical description of example 

 
For nx = 1000 and ny =1000 the calculations are as follows: 
 
Case 100x20: TKM_1 = 100 V +  2 *TKM(V,100,20,nx,ny)= 50000+ 2*13023.1 = 76046.2 
 
Case 50x10:   TKM_2 =  2*[150*(V/4) + 2*TKM(V/4,50,10,nx,ny)] 

   +  2*[50*(V/4) + 2*TKM(V/4,50,10,nx,ny)]     
 = 2*[18750+2*1627.89] + 2*[6250+2*1627.89] = 63023.12 

 
The results differ quite considerably in favour of the 50x10 partitioning. 

6. Conclusions 

The earthworks in a road construction case study were considered in this application paper. 
The main focus was to construct an earthwork allocation plan of least cost (or with least 
emissions), where cost is a direct measure of fuel consumption. The project site was 
partitioned into blocks and two block models were applied. 2D and 3D versions of the 
problem were compared to explore the effect of past simplifications. The computational 
burden of solving the block models (in 3D) was also investigated. In certain situations we 
have found that a 3D problem can be solved as a 2D one. When project domains (i.e. sites) 
are rectangular then it is most efficient to haul material along an axis rather than across it. In 
these situations, a 2D variant of the problem can be solved and replicated to obtain the 
optimal for the whole 3D problem. However in other scenarios this produces inferior 
solutions. As the number of blocks increases, the computational burden increases. This is 
particularly noticeable when considering 3D problems. In this paper we were unable to solve 
3D problems with more than 2500 blocks, and a block size of less than 50 metres in length 
on a 7 km road project. More advanced solution techniques (such as graph theoretic, 
constructive algorithms, meta-heuristics) are hence necessary and/or the use of more 
powerful computers. 

Reducing the block size and modelling more blocks is a superior approach as i) more 
earth movements are included and ii) earth can be moved to more destinations (i.e. 
improved decision making flexibility). Given the theory in Section 5, it is not possible to 



directly compare the solutions for different block sizes as the block size also affects the 
amount of “internal movements-haulages” that are included in modelling activities. 
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